Jamal, Malikil (2024) Penerapan Yolo V8 Untuk Deteksi Kecacatan Produksi di Perusahaan Manufaktur. JUSIKOM PRIMA (Jurnal Sistem Informasi dan Ilmu Komputer Prima), 8 (1). ISSN 2580-2879
![cover_240017_20416255201071_Malikil Jamal.pdf [thumbnail of cover_240017_20416255201071_Malikil Jamal.pdf]](http://repository.ubpkarawang.ac.id/style/images/fileicons/text.png)
cover_240017_20416255201071_Malikil Jamal.pdf
Download (275kB)
![DAFTAR ISI_240017_20416255201071_Malikil Jamal.pdf [thumbnail of DAFTAR ISI_240017_20416255201071_Malikil Jamal.pdf]](http://repository.ubpkarawang.ac.id/style/images/fileicons/text.png)
DAFTAR ISI_240017_20416255201071_Malikil Jamal.pdf
Download (507kB)
![Article_240017_20416255201071_Malikil Jamal.pdf [thumbnail of Article_240017_20416255201071_Malikil Jamal.pdf]](http://repository.ubpkarawang.ac.id/style/images/fileicons/text.png)
Article_240017_20416255201071_Malikil Jamal.pdf
Restricted to Registered users only
Download (1MB)
![DAFTAR PUSTAKA_240017_20416255201071_Malikil Jamal.pdf [thumbnail of DAFTAR PUSTAKA_240017_20416255201071_Malikil Jamal.pdf]](http://repository.ubpkarawang.ac.id/style/images/fileicons/text.png)
DAFTAR PUSTAKA_240017_20416255201071_Malikil Jamal.pdf
Download (165kB)
![LAMPIRAN_240017_20416255201071_Malikil Jamal.pdf [thumbnail of LAMPIRAN_240017_20416255201071_Malikil Jamal.pdf]](http://repository.ubpkarawang.ac.id/style/images/fileicons/text.png)
LAMPIRAN_240017_20416255201071_Malikil Jamal.pdf
Restricted to Registered users only
Download (482kB)
Abstract
One important aspect in the production process is maintaining product quality and avoiding defects that could harm the company. This research aims to improve quality and avoid product defects that are detrimental to the company, especially defects in the form of bubbles in the product, by using YOLOv8. The dataset consists of 100 data which is divided into 80 for training and 20 testing data with an epoch value of 100. To obtain optimal bubble detection results, this research chose the latest version of YOLOv8 and compared several models, namely YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. The research results show that YOLOv8m achieves the highest accuracy among other models with a mAP value of 0.712, precision of 0.764, recall of 0.659, and F1-score of 0.708. This research highlights the potential of detection models that can detect bubbles precisely and accurately.
Keywords:Product Defects, Bubble Detection, Manufacturing Companies, YOLOv8 Models
Item Type: | Article |
---|---|
Subjects: | T Technology > T Technology (General) |
Divisions: | Faculty of Engineering, Science and Mathematics > School of Electronics and Computer Science |
Depositing User: | Pustakawan UBP Karawang |
Date Deposited: | 29 Sep 2025 02:33 |
Last Modified: | 29 Sep 2025 02:33 |
URI: | http://repository.ubpkarawang.ac.id/id/eprint/4266 |