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Since the target data for heart disease was not 

balanced, it was necessary to perform an  

oversampling technique with default parameters. 

Thus, the unbalanced data becomes balanced based on 

the oversampling process that has been carried out. 

Moreover, the K-Fold testing technique employed K- 

Fold 10 [19], [20]. The illustration of K-Fold is shown 

in Figure 5, where the prediction model begins by 

dividing all data into training data and test data with 

K-Fold cross-validation, and cross-testing of each - 

each algorithm. Performance evaluation is carried out 

on the model with the aim of knowing how well the 

model is performing using test data. 

 
Validation Fold 

 
By using the K-Fold calculation based on table 3, 

in this study the best accuracy value was obtained in 

the K-Fold 10 calculation for SMOTE applied to 

Random Forest 94.43% and ADASYN applied to 

Random Forest 94.34%. Thus, the combined 

technique of Random Forest with SMOTE and 

Random Forest with ADSYN had better performance 

than C45 with ADASYN and C45 with SMOTE. It 

was proven that the Random Forest algorithm with 

SMOTE has the best ability to predict class data 

compared to Random Forest with ADASYN with an 

accuracy of 94.43%. 

 

4. Conclusion 
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Figure 5. K-Fold Illustration 

Based on the results of the research that has been 

carried out, it was concluded that the SMOTE and 

ADASYN oversampling techniques had a significant 

impact on the classification results. It was proven that 

the increase in accuracy which occurred in the 

Random Forest and C.45 algorithms was quite 

significant. However, the highest accuracy was the 

combination of implementing SMOTE with Random 

Forest which reached 94.43%. The results of this 

study can be considered by experts to assist decisions 

in dealing with heart disease. Moreover, regarding 

further research, it is suggested to correlate a 
The evaluation for this study was based on 

accuracy, precision, sensitivity, and specificity. The 

evaluation process utilised the test data that has been 

separated in the previous process and the evaluation 

results employed the confusion matrix shown in 

Table2. 

Table 1. K-Fold 10 
 

Algorithm Accuracy K-Fold (%) 

  C45  86,74  

  RANDOM FOREST  90,56  

C45 + SMOTE 91,77 

RF + SMOTE 94,43 

C45 + ADASYN 91,71 
RF + ADASYN 94,34 

 

The model generated from running Equation 1 to 

Equation 4 operated the Confusion Matrix on the C45 

algorithm which produced an accuracy of 86.74%. On 

the other hand, the Random Forest Classifier 

algorithm had succeeded in producing a prediction 

model with a higher accuracy value than C4.5, which 

was 90.56%. Table 3 shown the results of the 

comparison of SMOTE and ADASYN. 

 
Table 2 Comparison of SMOTE and ADASYN 

dashboard and visualization of the relationship 

between features which affect heart disease. 
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